Systematic study of the effect of conventional and non-conventional processing on vitamins in fruit juices

H.Zia, M.Hofsommer, N.Fischbach, H.Murray, A.M.Bareto, D.Pavon-vargas, A.Puzovic, A.Gędas, S.Rincon, M.Gössinger, A.Slatnar

1. Introduction

Fruit juices are a good source of water-soluble vitamins; therefore, vitamin retention in these products is a critical quality attribute [1]. Non-conventional processing technologies are believed to ensure better vitamin retention than conventional thermal treatment (TT) due to short treatment time and low operating temperatures [2]. Recent review studies, however, demonstrate that the knowledge on the topic is fragmentary[3]. To ensure fair and reliable characterization of the effects of different preservation technologies on the quality of fruit juices, it is essential to perform a comparison under comparable conditions.

2. Methodology

2.1.B vitamin analysis

matrix was a sugar solution with water, and soluble solids and titratable acidity were adjusted to 12° and 5 g/kg. Strawberry nectar was used as a model matrix. The strawberry nectar was prepared after blending 40 % strawberry puree with water. Sucrose and citric acid were added to adjust the soluble solids and titratable acidity to 12° and 5 g/kg, respectively.

3. Results

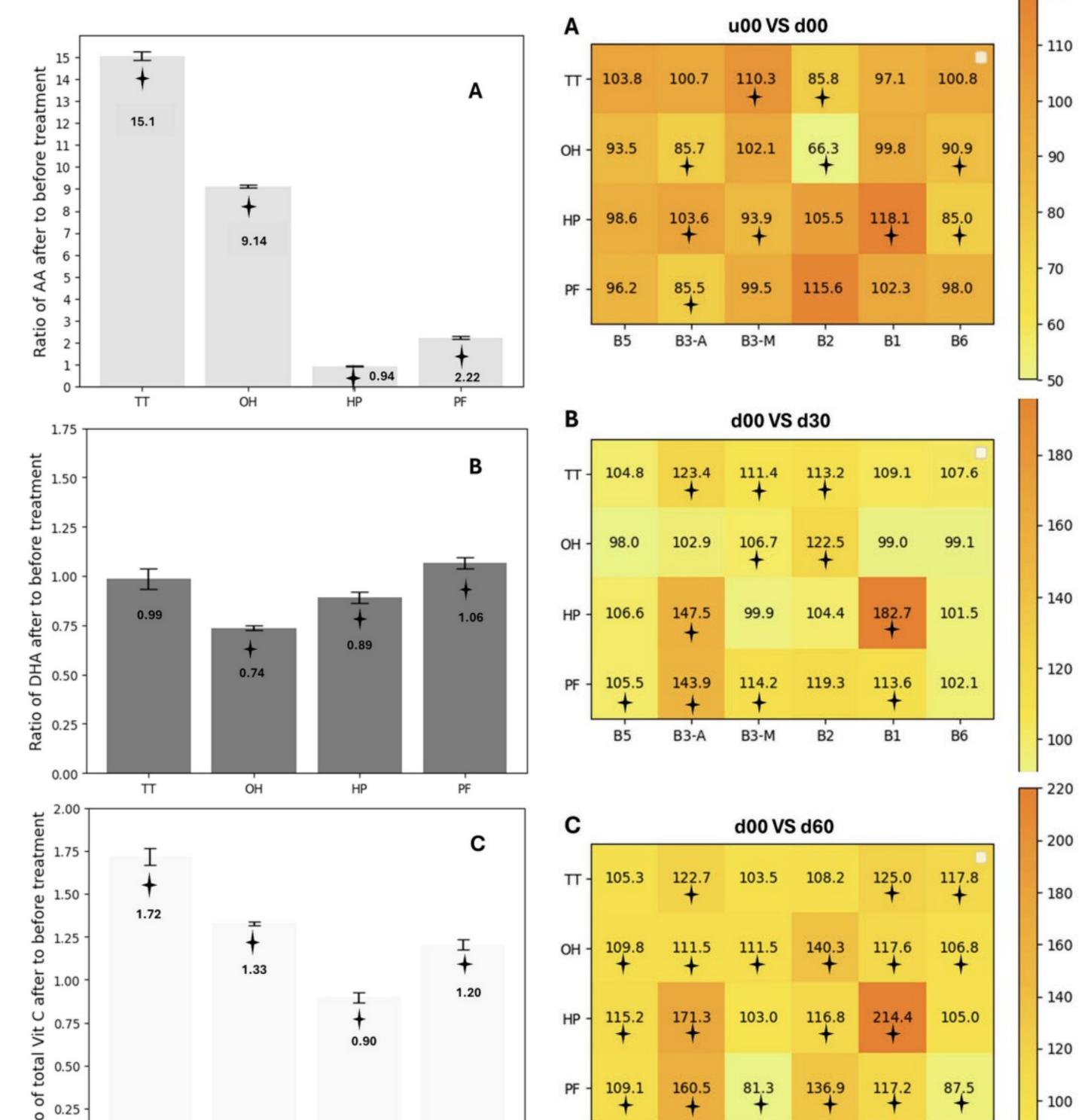


Table 1. The table summarizes the HPLC parameters for the developed vitamin B method.

Column	Agilent EC-C18 Poroshell (3.0 mm x 150 mm, 2.7 μm)		
Column Temperature	20 °C		
Injection Volume	5 μL		
Eluents	 A: 0.1 % Formic acid in 4.5 mM of Ammonium Formate buffer in water* B: 0.1 % Formic acid in 4.5 mM of Ammonium Formate buffer in Methanol* 		
Ion Source Temperature	500 °C		
Ionising Voltage	3500 V		

Table 2. The table shows MS-related parameters for the respective vitamins along with their retention time.

Q1	Q3	Analyte	Retention time (min)
265.0	122.0	Thiamine B1	2.6
124.0	78.1	Nicotinic acid B3-A	3.9
123.2	80.0	Nicotinamide B3-M	5.5
170.0	152.2	Pyridoxine B6	6.1
220.1	202.1	Pantothenic Acid B5	11.4
678.4	147.1	Cyanocobalamin B12	11.9
442.1	295.2	Folic acid B9	12.4
245.1	227.1	Biotin B7	12.6

377.1243.0Riboflavin B212.7

2.2.Vitamin C analysis

Table 3. The table shows a summary of the HPLC parameters for the developed vitamin C method.

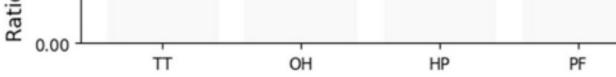

Column	SeQuant [®] ZIC-HILIC (2.1 × 100 mm, 3.5 μm)
Column Temperature	5 °C
Injection Volume	0.5 μL
Ion Source Temperature	350 °C
Ionization Voltage	-4500 V
Flow rate	0.3 mL/min

Table 4. The table shows the MS-related parameters for the respective vitamins, along with their retention time. AA: ascorbic acid, DHA: dehydroascorbic acid

Analyte	Retention	Q 1 (m/z)	Q 3 (m/z)	DP	CE	СХР	
	time (min)			(V)	(V)	(V)	
AA	5.25	175	115*	-60	-15	-9	
			87	-60	-24	-9	l
			71	-60	-15	-9	l r
DHA	2.97	173	113*	-115	-14	-11	Ī
			99	-115	-12	-13	
			71	-115	-22	-29	

2.3.Comparison of technologies

Table 5. The summary of processing conditions for the processing technologies corresponding to 5 log reduction of reference microbe.

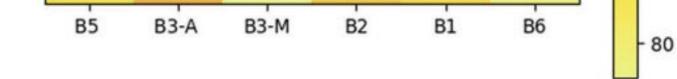


Figure 1. Change in the content of AA (A), DHA (B), and total vitamin C content (C). The star symbol shows a significant difference in the content between treated and untreated nectar (p < 0.05). AA: ascorbic acid, DHA: dehydroascorbic acid Figure 2. Change in the content of B vitamins after treatment (A) and after storage of treated strawberry nectar at 4 °C for 30 days (B) and 60 days (C). The change is reported as % retention. The star symbol indicates the statistical significance

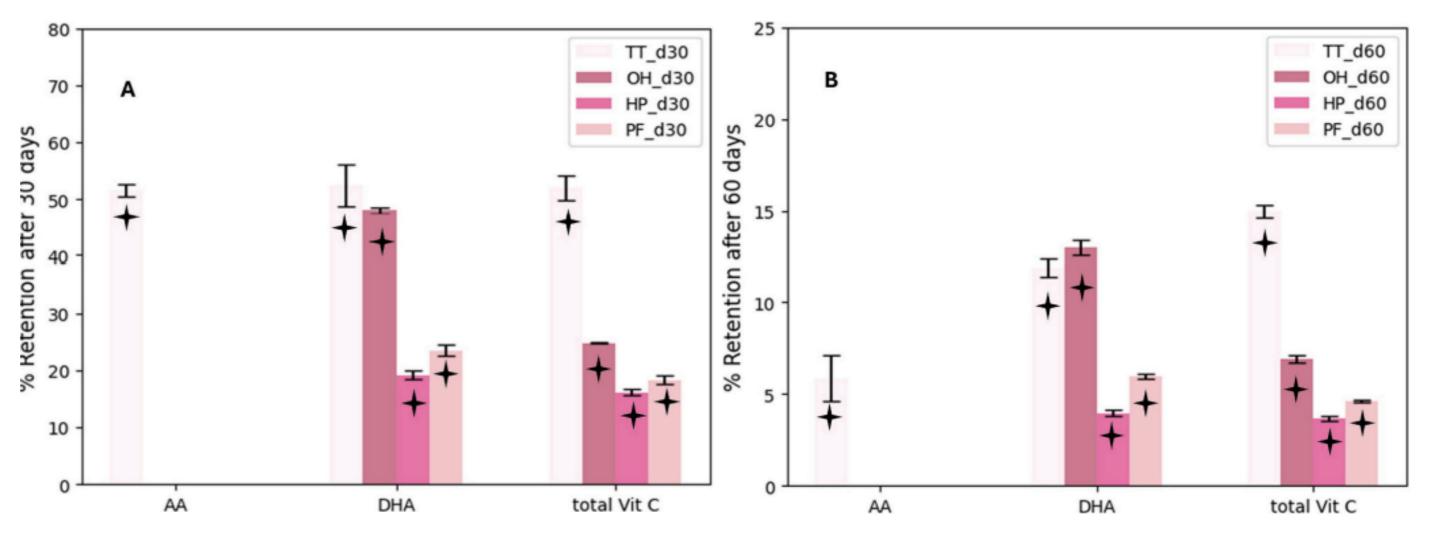


Figure 3. Change in the content of ascorbic acid (AA), dehydroascorbic acid (DHA), and total vitamin C content (AA+DHA) in treated strawberry after 30 days (A) and 60 days (B) of storage at 4 °C. The star symbol shows a significant decrease in the content of analytes in the treated samples (p < 0.05).

4. Conclusion

Processing technique	Processing parameters
Conventional thermal processing (TT)	Temperature: 72 °C Holding time: 117 s
High pressure processing (HP)	Pressure: 600 MPa Holding time: 5 min
Pulse electric field (PF)	Field strength: 20 kV/cm Specific Energy: 100 kJ/Kg Treatment time: 109 μs
Ohmic heating (OH)	Temperature: 72 °C Holding time: 117 s

Pilot-scale equipment was used to undertake processing. The processing conditions were validated using a surrogate matrix for the 5-log reduction condition at the pilot scale. The surrogate

- This study concludes simple and accurate multi-vitamin analysis methods for water-soluble vitamins. The methods can facilitate fast and accurate B vitamin routine analysis in fruit juices.
- TT, OH, and PF resulted in a significant increase in AA content.
- TT-treated nectar had best retention of vitamin C after treatment and during storage.
- The B vitamins remained largely unchanged after processing
- B vitamin content in treated nectars significantly increased during storage

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956257.

E.S. Mitchell, K. Musa-Veloso, S. Fallah, H.C. Lee, P.J.D. De Chavez, S. Gibson Contribution of 100% fruit juice to micronutrient intakes in the United States, United Kingdom and Brazil Nutrients, 12 (5) (2020), p. 1258, 10.3390/nu12051258
 A.S. Raj, S. Chakraborty, P.S. Rao. Thermal assisted high-pressure processing of Indian gooseberry (Embilica officinalis L.) juice – Impact on colour and nutritional attributes LWT, 99 (2019), pp. 119-127, 10.1016/j.lwt.2018.09.051
 M. Houška, F.V.M. Silva, R. Evelyn Buckow, N.S. Terefe, C. Tonello High pressure processing applications in plant foods. Foods, 11 (2) (2022), p. 223, 10.3390/foods11020223